Amyloid beta-protein reduces acetylcholine synthesis in a cell line derived from cholinergic neurons of the basal forebrain.

نویسندگان

  • W A Pedersen
  • M A Kloczewiak
  • J K Blusztajn
چکیده

The characteristic features of a brain with Alzheimer disease (AD) include the presence of neuritic plaques composed of amyloid beta-protein (Abeta) and reductions in the levels of cholinergic markers. Neurotoxic responses to Abeta have been reported in vivo and in vitro, suggesting that the cholinergic deficit in AD brain may be secondary to the degeneration of cholinergic neurons caused by Abeta. However, it remains to be determined if Abeta contributes to the cholinergic deficit in AD brain by nontoxic effects. We examined the effects of synthetic Abeta peptides on the cholinergic properties of a mouse cell line, SN56, derived from basal forebrain cholinergic neurons. Abeta 1-42 and Abeta 1-28 reduced the acetylcholine (AcCho) content of the cells in a concentration-dependent fashion, whereas Abeta 1-16 was inactive. Maximal reductions of 43% and 33% were observed after a 48-h treatment with 100 nM of Abeta 1-42 and 50 pM of Abeta 1-28, respectively. Neither Abeta 1-28 nor Abeta 1-42 at a concentration of 100 nM and a treatment period of 2 weeks was toxic to the cells. Treatment of the cells with Abeta 25-28 (48 h; 100 nM) significantly decreased AcCho levels, suggesting that the sequence GSNK (aa 25-28) is responsible for the AcCho-reducing effect of Abeta. The reductions in AcCho levels caused by Abeta 1-42 and Abeta 1-28 were accompanied by proportional decreases in choline acetyltransferase activity. In contrast, acetylcholinesterase activity was unaltered, indicating that Abeta specifically reduces the synthesis of AcCho in SN56 cells. The reductions in AcCho content caused by Abeta 1-42 could be prevented by a cotreatment with all-trans-retinoic acid (10 nM), a compound previously shown to increase choline acetyltransferase mRNA expression in SN56 cells. These results demonstrate a nontoxic, suppressive effect of Abeta on AcCho synthesis, an action that may contribute to the cholinergic deficit in AD brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of amyloid-beta on cholinergic and acetylcholinesterase-positive cells in cultured basal forebrain neurons of embryonic rat brain.

The neurotoxic effects of amyloid-beta(1-42) and amyloid-beta(25-35) (A beta) on cholinergic and acetylcholinesterase-positive neurons were investigated in primary cultures derived from embryonic 18-day-old rat basal forebrain. After various time intervals, the cultures were treated with 1, 5, 10 or 20 microM A beta for different time periods. The cholinergic neurons and their axon terminals we...

متن کامل

Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer’s disease

427 Alzheimer’s disease is an age-related neurodegenerative disorder that is characterized by a progressive loss of memory and deterioration of higher cognitive functions. The brain of an individual with Alzheimer’s disease exhibits extracellular plaques of aggregated β-amyloid protein (Aβ), intracellular neurofibrillary tangles that contain hyperphosphorylated tau protein and a profound loss o...

متن کامل

-Amyloid Peptide Activates Non- 7 Nicotinic Acetylcholine Receptors in Rat Basal Forebrain Neurons

Fu, Wen and Jack H. Jhamandas. -Amyloid peptide activates non7 nicotinic acetylcholine receptors in rat basal forebrain neurons. J Neurophysiol 90: 3130–3136, 2003. First published July 30, 2003; 10.1152/jn.00616.2003. Alzheimer’s disease (AD) is a progressive neurodegenerative condition characterized by profound deficits in memory and cognitive function. Neuropathological hallmarks of the dise...

متن کامل

Beta-amyloid-related peptides inhibit potassium-evoked acetylcholine release from rat hippocampal slices.

The 4 kDa beta-amyloid (A beta) protein, a major component of cerebral and cerebrovascular plaques in Alzheimer's disease (AD), is derived from the proteolytic cleavage of a larger, membrane-bound precursor, the A beta precursor protein (APP). Until recently, it was assumed that an aberrant AD-specific proteolysis generated A beta peptides, which subsequently could initiate and/or contribute to...

متن کامل

A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides.

Nicotinic acetylcholine receptors (nAChRs) containing alpha7 subunits are thought to assemble as homomers. alpha7-nAChR function has been implicated in learning and memory, and alterations of alpha7-nAChR have been found in patients with Alzheimer's disease (AD). Here we report findings consistent with a novel, naturally occurring nAChR subtype in rodent, basal forebrain cholinergic neurons. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 93 15  شماره 

صفحات  -

تاریخ انتشار 1996